
Combining the Benefits of LXI and Scripting 	 July 2008	 1

P
rogrammable instruments
have been available in one form
or another for many years.
Although specific capabilities
vary, a programmable instru-

ment allows the user to create and store a
set of instructions (a program) in the instru-
ment itself, where it can be executed on
demand. Early programmable instruments
generally had quite limited capability and
capacity, which restricted the usefulness of
the programmability to relatively small and
simple applications. Larger or more complex
applications required the use of a separate
computer or controller, which controlled the
instrument via a communications interface,
often GPIB.

Improvements in computing technol-
ogy and programming languages and the
steadily declining cost of embedded comput-
ing capacity have led to a new generation of
programmable instruments. This new breed
of instruments breaks through the old limits
to provide greatly increased capability and
flexibility. One key improvement realized
in these instruments is the use of a scripting

language to provide programmability. This
article provides a detailed look at scripting
and how it can enhance speed and simplicity
in test and measurement.

What is scripting?
Simply put, scripting is writing programs

in a scripting language to coordinate a
sequence of actions.

Scripting goes well beyond the more
conventional use of macros or recorded
sequences. It employs the full power of a
scripting language, which includes looping,
branching, and data processing. Although
macros can be repeated in a way that pro-
vides rudimentary looping control, scripting
offers a full run-time environment in which
values can be stored in variables. These vari-
ables can then be used to control both loop-
ing and branching decisions.

The main difference between a scripting
language and other programming languages
is that script programs do not need to be
precompiled before being run. Scripting
environments will either interpret the pro-
gram directly or compile it automatically

when needed. Beyond that, scripting lan-
guages offer the full power of a program-
ming language. This includes storing values
in variables and creating stored procedures
(functions) for code reuse.

A script need not be compiled as a sepa-
rate step, so scripting languages are well
suited for embedded use in test and meas-
urement equipment. Scripts can be down-
loaded to the instrument without the need
for extra preparation steps for greater user
convenience.

One key difference between a scripting
language running on a PC and a scripting
language embedded in an instrument is the
environment. When running on a PC, the
scripting language generally has access to a
file system, virtually unlimited memory, and
a graphical display, as well as a keyboard and
mouse. When running on an instrument, a
scripting language does not necessarily have
access to any of these amenities, but they are
generally not needed.

Scripting in instrumentation
Popular scripting languages include Perl®,

Python®, VBScript®, and JavaScript®. The
Lua scripting language is particularly well
suited for embedded use because it executes
faster than most other scripting languages
and is implemented as a library that takes
very little code space. Keithley Instruments
chose Lua for its Test Script Processor (TSP)
enabled line of instruments.

When adding scripting support to test
and measurement instrumentation, one of
the most difficult choices to make is how
to present the scripting to the user. This
includes answering tough questions such
as: “How do I integrate the instrument com-
mand set with the scripting environment?”
“How will the user load scripts into the
instrument?” Keithley chose to integrate the
scripting environment fully with the com-
mand set, which means that all instrument
commands are also fully legal Lua state-
ments. Essentially, each command message
sent to the instrument is executed as a Lua
program.

This choice makes it easy for the user
to transition from controlling an instru-
ment with single commands to using scripts
because there’s no need to learn a whole new
command set. Commands that can be sent to
the instrument over a GPIB or LXI interface

Combining the
Benefits of LXI
and Scripting
Paul Franklin and Todd Hayes, Keithley Instruments, Inc.

A G R E A T E R M E A S U R E O F C O N F I D E N C E

Combining the Benefits of LXI and Scripting2	 July 2008

are the same as the ones used within a script. This greatly simpli-
fies the process of migrating from simple command-based control to
script-based control. The user can simply send larger scripts to the
instrument instead of individual commands.

The drawback to this choice is that instrument commands might
seem a little strange to the first-time user. A few examples will help
demonstrate this. These examples compare using Keithley’s Model
2400 SourceMeter® instrument, a SCPI-based unit, with our Model
2602 dual-channel System SourceMeter instrument, a TSP-based
unit.

The command used to make the instrument’s source output cur-
rent on the Model 2400 is:
:SOUR:FUNC CURR

The equivalent command for the Model 2602 is:
smua.source.func = smua.DC _ AMPS

The smua prefix designates channel A of the Model 2602 dual-
channel instrument. The rest of the command is similar to the SCPI
command with the exception of the equals sign. This is a Lua assign-
ment operation that sets the value of the smua.source.func attri-
bute to the value smua.DC _ AMPS.

Queries are a little bit stranger. Because commands are valid Lua
statements, the print function is used to generate output. The SCPI
query to return the source function on the Model 2400 is:
:SOUR:FUNC?

The equivalent command on the Model 2602 is:
print(smua.source.func)

Just as a SCPI instrument supports compound commands by
separating individual commands by a semicolon, the script-based
instrument can support compound commands by separating the com-
mands with a statement separator. In Lua, the statement separator is
a whitespace character.

Let us assume our instruments are already configured to source
voltage. On the Model 2400, the following command message will
set the output level and then turn the output on:
:SOUR:VOLT 1.0; :OUTP 1

The equivalent command message on a Model 2602 is:
smua.source.levelv = 1.0 smua.source.output = 1

The preceding examples illustrate that the scripting instrument
can behave very much like the conventional instrument. Only the
command syntax has changed slightly. To take advantage of the full
power of the scripting engine, the user simply starts sending messages
that employ the capabilities of the scripting language. For example,
a user could ask the instrument to perform a binary search looking
for the source voltage that will generate an output current of 1mA by
sending the following script:
step = 2.5

smua.source.levelv = step

while (step > 0.1) do

 if (smua.measure.i() > 0.001) then

 smua.source.levelv = smua.source.levelv – step

 else

 smua.source.levelv = smua.source.levelv + step

 end

 step = step / 2.0

end

print(smua.source.levelv)

The advantage of such a script is that it avoids the communication
time required for reading each individual result and sending the com-
mands to source new voltage levels. Although it is reasonable to ques-
tion how long it takes to send the longer message, it will generally be
much faster to send one longer message than to communicate several
smaller messages back and forth. However, one of the advantages of
a scripting environment is that the preceding code can be packaged
into a function definition and then reused, which would completely
avoid sending the large message when used. For example:
function Search(start, target)

 step = start

 smua.source.levelv = step

 while (step >.1) do

 if (smua.measure.i() > target) then

 smua.source.levelv = smua.source.levelv – step

 else

 smua.source.levelv = smua.source.levelv + step

 end

 step = step / 2.0

 end

 print(smua.source.levelv)

end

The preceding command does not make the instrument do any-
thing right away, but it creates a stored procedure named “Search”
that can later be invoked with this command:
Search(2.5, 0.001)

Instruments can have several features that complement the script-
ing engine. If the scripting environment provides programmatic
access to the front panel of the instrument, the user can create inter-
active scripts that prompt the user for parameters or display results on
the front panel. The instrument can also provide on-board nonvola-
tile script storage so that these stored scripts can be automatically
executed when the unit powers up. This allows executing a previously
loaded application without any user action other than turning on the
power for the instrument.

Embedded scripting provides significant benefits for test and
measurement instrumentation users. Although it has some minor
drawbacks associated with it, such as the unfamiliar nature of que-
ries described earlier, most users can work around them or adapt to
them readily.

Scripting languages generally manage memory automatically so
the user does not need to allocate and de-allocate storage for strings
or arrays. Although this is very convenient for the user, the script-
ing engine periodically needs to reclaim memory that is no longer
being used, a process known as “garbage collection.” Even though
garbage collection is done automatically, it does take time, which
can cause problems if it occurs during a time-critical portion of a test
sequence. These problems can be prevented, but the user first must
understand the impact of the garbage collector and how to avoid it in
time-critical test sequences.

Combining the Benefits of LXI and Scripting 	 July 2008	 3

LXI and scripting
The current LXI standards for instrumentation do not require

that instruments be programmable or implement scripting. However,
several features in the LXI specification anticipate programmable
instruments and provide useful functionality that enhances script-
ing’s capabilities on LXI conformant instruments.

The LXI specification requires Class A and B instruments to sup-
port peer-to- peer messaging via LAN messages, and it permits Class
C instruments to support it. LAN messages can be used to notify
other LXI instruments of events or to trigger another instrument to
perform some function. Users must be able to specify what action is
performed upon receipt of a LAN message. The most flexible way to
implement this, and the way recommended by the LXI specification,
is to allow the user to download executable code (i.e., a script or pro-
gram) into the instrument, which is then executed upon receipt of the
appropriate LAN message. This provides a great deal of flexibility
because the user is not constrained to a predefined set of actions.

Furthermore, the LAN message format defined by LXI includes
a small space for including arbitrary data as part of the message. It
is feasible to transfer executable code, such as a short script, as part
of the LAN message. This would allow one instrument to control
another via LAN messages without pre-programming the response.
For example, suppose an instrument performs a measurement on a
device under test (DUT). Based on the result of that measurement, it
must change a stimulus applied to the DUT by another instrument.
The new stimulus value is calculated based on the first measurement,
so it not known in advance. In this case, the first instrument could
send a LAN message containing a short script to the second instru-
ment to adjust the stimulus value.

 The next section describes the benefits script-based instruments
provide. Many of these are enhanced when the instrument also con-
forms to the LXI specification.

Benefits of scripting for test and
measurement applications

For many test and measurement applications, using a PC as a con-
troller for communicating to separate instruments or using slot-based
systems with integral controllers is perfectly adequate. For other
situations, however, those approaches are either overkill—and thus
overly expensive—or not quite up to the task. These applications ben-
efit from the additional capabilities and flexibility that script-based
instruments offer. This section describes the benefits of scripting in
test and measurement applications.

Architectural flexibility
Small test systems with a few instruments can be built without a

separate controller; one of the instruments acts as the controller and
coordinates the operation of the other instruments. Large systems
can be divided into subsystems of a few instruments each, with each
subsystem coordinated by a script-based instrument. This simplifies
system design and can help improve performance. With LXI script-
based instruments, such subsystems can be widely physically sepa-
rated, such as in assembly lines, scientific applications, or RF testing
applications.

Improved performance
Dividing large systems into subsystems coordinated by script-

based instruments spreads the control and data processing func-
tions across multiple processors, increasing the total processing
power available in the system and often improving overall speed and
throughput. Furthermore, such division of labor allows for parallel
testing: instruments or subsystems do not need to sit idle while a cen-
tral controller is busy with another task.

Scripts running in an instrument can run at maximum speed
because there are fewer delays due to communications with the con-
troller while each command and piece of data is transferred. This is
especially significant when the instrument is performing a repetitive
test sequence. With a separate controller, the sequence of instruc-
tions is transferred to the instrument once for every pass, even if the
same sequence is run hundreds or thousands of times. Contrast that
approach with a script that need be transferred to the instrument
only once and then executed using a short command as many times
as desired.

Conditional processing, such as when the results of one measure-
ment determine the next function to be performed, offers another
avenue for performance improvement. Performing the condition
check locally in the script can eliminate the delays resulting from
sending the first result to the controller, waiting for the controller to
process it, and then send the next commands to the instrument.

In systems with high data rates and/or large data sets, commu-
nications latency, bandwidth limitations, and controller throughput
can be serious bottlenecks. Script-based instruments can compress
data to reduce bandwidth requirements and/or buffer it for back-
ground transmission when bandwidth is available. They can also
filter data by, for example, only transferring data that falls outside
of normal limits. As mentioned previously, scripting also reduces
the communications bandwidth consumed sending commands from
the controller to the instruments, improving performance in band-
width-limited applications, and minimizing the delays caused by
communications latency.

Reduced costs
Using script-based instruments, smaller or less complex test sys-

tems can be built without a separate controller, saving the cost of
the controller and that of any separate test executive software that
would otherwise be used to control the instruments. When building
subsystems from script-based instruments the same cost-savings can
be realized when building large test systems.

Example Scripts
This section includes several example scripts that demonstrate

some of the features of Keithley’s script-enabled instruments.
Figure 1 shows how two Keithley System SourceMeter instruments
can be controlled from a single script to generate a three-phase AC
waveform. In this case, Keithley’s TSP-Link technology connects
the two instruments and makes it easy for a script to control both
instruments.

Figure 2 demonstrates how timers based on LXI Class B tech-
nology can control script operation. In the script, a Keithley Model

Combining the Benefits of LXI and Scripting4	 July 2008

-- This script outputs a three-phase ac sine wave voltage

using three SMU channels

-- cycles programs how many waveform cycles to output

cycles = 25

-- del programs the delay time between each step in

seconds

del = 0

-- define the smu channels to be used to output each

phase

p1smu = node[1].smua

p2smu = node[1].smub

p3smu = node[2].smua

-- Set up the sources using Sourcesetup function defined

below

function Sourcesetup(smu)

	 smu.reset()

	 smu.source.func = smu.OUTPUT _ DCVOLTS

	 smu.measure.autorangev = smu.AUTORANGE _ OFF

	 smu.source.autorangev = smu.AUTORANGE _ OFF

	 smu.source.rangev = 40

	 smu.source.levelv = 0

	 smu.source.limiti = 1

end

Sourcesetup(p1smu)

Sourcesetup(p2smu)

Sourcesetup(p3smu)

twopi = 2 * math.pi

-- Turn on the ouptuts and output the waveform

p1smu.source.output = p1smu.OUTPUT _ ON

p2smu.source.output = p2smu.OUTPUT _ ON

p3smu.source.output = p3smu.OUTPUT _ ON

for i = 1, cycles do

	 for i = 0, twopi, twopi/36 do

		 p1smu.source.levelv = math.sin(i)

		 p2smu.source.levelv = math.sin(i + twopi/3)

		 p3smu.source.levelv = math.sin(i + twopi/1.5)

		 delay(del)

	 end

end

p1smu.source.output = p1smu.OUTPUT _ OFF

p2smu.source.output = p2smu.OUTPUT _ OFF

p3smu.source.output = p3smu.OUTPUT _ OFF

-- This script sets up a Keithley 3706 to measure DC

Volts on channels

-- 3001 through 3020 (card 3, channels 1-20). The

measurement on each

-- channel is triggered by an alarm.

--

-- The alarm is a simple repeating alarm based on 1588

time. It is

-- set to 15 seconds after the program starts and repeats

with an

-- interval of 100 ms 20 times

--

-- The script blocks (on "scan.execute(buffer)") until all

20 measurements

-- are complete. Then timestamps of the measurements are

printed relative

-- to the desired trigger time.

reset()

scan.reset()

buffer=dmm.buffer.make(200)

dmm.connect=dmm.CONNECT _ ALL

dmm.autodelay=dmm.OFF

dmm.range=10

dmm.autozero=dmm.OFF

dmm.nplc=.0005

dmm.measurecount=1

dmm.configure.set('mydcvolts')

dmm.setconfig('3001:3020', 'mydcvolts')

scan.add('3001:3020')

scan.measurecount=1

scan.trigger.measure.stimulus=schedule.alarm[1].

EVENT _ ID

sec,ns=ptp.time()

schedule.alarm[1].ptpseconds=sec+15

schedule.alarm[1].fractionalseconds=0

schedule.alarm[1].repetition=20

schedule.alarm[1].period=0.100

schedule.alarm[1].enable=1

print("alarm set to trigger in ", schedule.alarm[1].ptp

seconds-sec, " seconds")

scan.execute(buffer)

for j=1,20 do print((buffer.ptpseconds[j]+buffer.fractional

seconds[j])-sec-15-(j-1)*.1) end

Figure 1. Two Keithley System SourceMeter® instruments can be con-
trolled from a single script to generate a three-phase AC waveform.

Figure 2: A Keithley Model 3706 System Switch/DMM, which is an LXI
Class B instrument, uses timers based on IEEE 1588 to sequence a series
of measurements.

Combining the Benefits of LXI and Scripting 	 July 2008	 5

3706, which is an LXI Class B instrument,
uses timers based on IEEE 1588 to sequence
a series of measurements. The timing fea-
tures in LXI Class B are particularly useful
for avoiding or minimizing system delays
caused by latency or communication delays.

Developing effective scripts
Scripts can be developed in several

ways. Keithley Instruments provides an
IDE (Integrated Development Environment)
called Test Script Builder (TSB) for develop-
ing scripts for any of Keithley’s TSP-enabled
instruments. TSB can be used to edit, down-
load, and execute scripts on the instrumenta-
tion. TSB includes a built-in simulator that
can be used to debug a script without the
need to transfer it to the instrument, which
allows developing scripts even when the
hardware is unavailable.

Some LXI instruments have a telnet port
that can be used for remote control. For
these instruments, using a text editor offers
a quick and simple way to write and debug
scripts. From the telnet application, the user
can paste script text or download script files
directly to the instrument.

Some users prefer to embed their scripts
directly into their test executive application.
These users develop and debug their scripts
at the same time as they are developing and
debugging their test executive application.

LXI’s Web connectivity has allowed
Keithley to embed a script development tool
called TSB Embedded in its Series 3700
switch/DMM products. Users can access
this tool via a Web page served by the instru-
ment itself, using a Web browser to develop
and manage their scripts without installing
any software on the PC.

A function-based or object-oriented
approach is advisable when developing
scripts for a product with embedded script
processing. Functions should be used wher-
ever possible. This is not only good practice
for maximizing code reuse, it reduces the
amount of code stored in the run-time envi-
ronment of the scripting engine and leaves
more memory for additional scripts and
data storage. The foremost advantage of
embedded scripting is that it can reduce the

communication time between the host PC
and the instrumentation. A function-based
approach maximizes this advantage because
the host PC need send only a short message
to invoke a stored procedure. If more lengthy
messages are often sent to the instrument,
the communications reduction advantage is
diminished.

Regardless of how a script is developed,
scripting brings some new concerns to test
management. Although it is useful in some
situations to store scripts in nonvolatile
memory on the instrumentation, it is not
always best to do so. When a test executive
expects that a particular version of a script
will be on the instrumentation, it is better to
load the scripts on the instrumentation when
the test executive starts. That way there is
complete control over which version of script
code the test executive is using.

PC controllers and script-
based instruments

Script-based instruments may of course
be used in conventional test systems with
a separate controller. The details of doing
this may vary, depending on exactly how the
manufacturer chooses to implement script-
ing. Keithley TSP-enabled instruments can
easily be used with separate controllers. As
described in detail previously, the command
names and syntax are somewhat different,
as is the syntax for performing queries to
retrieve status and data. Overall, however, the
changes are minor and anyone familiar with
programming instruments will easily adapt.

Those accustomed to using instrument
drivers to interface their software and the
instrument will find that they can continue
to use an instrument driver and treat a script-
based instrument much like a conventional
instrument. However, doing so would elimi-
nate many of the advantages scripting offers.
Fortunately, there are methods that allow
instrument driver writers and users to ben-
efit from the extra flexibility and capability
script-based instruments offer.

When developing an instrument driver
for a script-based instrument, one can choose
from three general approaches:

Conventional: The driver is written

as if the instrument were a conventional
instrument. No use is made of the scripting
capability. The only adjustment is to accom-
modate the differing syntax.

Extended: The conventional style driver
is enhanced with functions for transferring
scripts to the instrument and perhaps manag-
ing return data. This provides a way for users
to exploit scripting capability, but the driver
itself does not do so.

Enhanced: An instrument driver for a
script-based instrument can take advantage
of scripting in many of the ways described in
this article. For example, such a driver could
download scripts that perform many of the
functions normally handled by the driver to
the instrument itself. Then, calls made to the
driver are sent to the instrument as short sim-
ple commands, rather than as longer series
of typical instrument commands. As always,
there are trade-offs with such a design, but
script-based instruments provide additional
flexibility for optimizing system and soft-
ware design to achieve the best performance
possible for a given application.

The same three approaches apply to
writing software that controls a script-based
instrument directly without using an instru-
ment driver.

Summary
Scripting is a powerful and convenient

way to provide programmability for instru-
ments in test and measurement applications.
Script-based instruments provide architec-
tural flexibility, improved performance, and
lower cost for many applications. Scripting
enhances the benefits provided by LXI
instruments, and LXI provides features that
both enable and enhance scripting. Users
comfortable with conventional instruments
will find it easy and straightforward to
begin using script-based instruments. If so
desired, they can be programmed in much
the same way as conventional instruments
are. However, with minor adjustments to sys-
tem design and programming, the flexibility,
improved performance, and other benefits of
scripting are easy to incorporate into system
configurations.

Combining the Benefits of LXI and Scripting6	 July 2008

Specifications are subject to change without notice.
All Keithley trademarks and trade names are the property of Keithley Instruments, Inc.
All other trademarks and trade names are the property of their respective companies.

A G R E A T E R M E A S U R E O F C O N F I D E N C E

Keithley Instruments, Inc. ■ 28775 Aurora Road ■ Cleveland, Ohio 44139-1891 ■ 440-248-0400 ■ Fax: 440-248-6168 ■ 1-888-KEITHLEY ■ www.keithley.com

Belgium
Sint-Pieters-Leeuw
Ph: 02-3630040
Fax: 02-3630064
info@keithley.nl
www.keithley.nl

china
Beijing
Ph: 8610-82255010
Fax: 8610-82255018
china@keithley.com
www.keithley.com.cn

finland
Espoo
Ph: 09-88171661
Fax: 09-88171662
finland@keithley.com
www.keithley.com

france
Saint-Aubin
Ph: 01-64532020
Fax: 01-60117726
info@keithley.fr
www.keithley.fr

germany
Germering
Ph: 089-84930740
Fax: 089-84930734
info@keithley.de
www.keithley.de

india
Bangalore
Ph: 080-26771071, -72, -73
Fax: 080-26771076
support_india@keithley.com
www.keithley.com

italy
Peschiera Borromeo (Mi)
Ph: 02-5538421
Fax: 02-55384228
info@keithley.it
www.keithley.it

japan
Tokyo
Ph: 81-3-5733-7555
Fax: 81-3-5733-7556
info.jp@keithley.com
www.keithley.jp

korea
Seoul
Ph: 82-2-574-7778
Fax: 82-2-574-7838
keithley@keithley.co.kr
www.keithley.co.kr

Malaysia
Penang
Ph: 60-4-656-2592
Fax: 60-4-656-3794
chan_patrick@keithley.com
www.keithley.com

netherlands
Gorinchem
Ph: 0183-635333
Fax: 0183-630821
info@keithley.nl
www.keithley.nl

singapore
Singapore
Ph: 65-6747-9077
Fax: 65-6747-2991
koh_william@keithley.com
www.keithley.com.sg

sweden
Solna
Ph: 08-50904600
Fax: 08-6552610
sweden@keithley.com
www.keithley.com

Switzerland
Zürich
Ph: 044-8219444
Fax: 044-8203081
info@keithley.ch
www.keithley.ch

taiwan
Hsinchu
Ph: 886-3-572-9077
Fax: 886-3-572-9031
info.kei@keithley.com.tw
www.keithley.com.tw

UNITED KINGDOM
Theale
Ph: 0118-9297500
Fax: 0118-9297519
info@keithley.co.uk
www.keithley.co.uk

© Copyright 2008 Keithley Instruments, Inc. Printed in the U.S.A. 07.16.08

About the Authors
Paul Franklin is the manager of Keithley Labs, the technology development group

within Keithley Instruments. He chaired the LXI Consortium’s Technical Committee
from 2005-2007. Before joining Keithley Instruments in 2000, he gained more than 20
years of measurement and control industry experience as an engineer and a manager
with electronic controls and industrial automation firms. Mr. Franklin earned B.S.E.E.
and M.S.E. degrees at Case Western Reserve University and is a member of IEEE, the
IEEE-Computer Society, the IEEE-Instrumentation and Measurement Society, and the
Association for Computing Machinery. 440-542-8097, e-mail: pfranklin@keithley.com

Todd A. Hayes is a senior staff firmware engineer at Keithley Instruments. He has
more than 15 years of experience in embedded firmware design and was the lead firmware
architect on development of the company’s TSP. Mr. Hayes received B.S.E.E. and M.S.C.S
degrees from the University of Akron. 440-248-0400, e-mail: hayes_todd@keithley.com

Keithley Instruments, 28775 Aurora Rd., Cleveland, OH 44139

